
Sorting Algorithms

Algorithm Analysis and Big-O

Function Objects and the Comparator Interface

Checkout SortingAndSearching project from SVN



Exam results



Let’s see…



Remember 
Shlemiel the Painter



 Be able to describe basic sorting algorithms:
◦ Selection sort

◦ Insertion sort

◦ Merge sort

◦ Quicksort

 Know the run-time efficiency of each

 Know the best and worst case inputs for each



 Profiling: collecting data on the run-time 
behavior of an algorithm

 How long does selection sort take on:
◦ 10,000 elements?

◦ 20,000 elements?

◦ …

◦ 80,000 elements?

 O(n2)

Q1-3



 In analysis of algorithms we care about 
differences between algorithms on very large 
inputs

 We say, “selection sort takes on the order of 
n2 steps”

 Big-Oh gives a formal definition for
“on the order of”



 We write f(n) = O(g(n)), and 
say “f is big-Oh of g”

 if there exists positive constants c and n0 such that

 0 ≤ f(n) ≤ c g(n)
for all n > n0

 g is a ceiling on f



 Suppose the number of operations is given by 
a polynomial:

ak*nk + ak-1*nk-1 + … + a2*n2+ a1*n + a0

 Then the algorithm is O(nk).

 That is, take the highest order term and drop 
the coefficient



 Basic idea:
◦ Think of the list as having a sorted part (at the 

beginning) and an unsorted part (the rest)

◦ Get the first number in the
unsorted part

◦ Insert it into the correct 
location in the sorted part, 
moving larger values up to 
make room

Repeat until 
unsorted part is 
empty



 Profile insertion sort

 Analyze insertion sort assuming the inner 
while loop runs that maximum number of 
times (count the array accesses)

 What input causes the worst case behavior?
The best case?

 Does the input affect selection sort?

Q4-11bAsk for help if you’re stuck!



 For searching unsorted data, what’s the worst 
case number of comparisons we would have 
to make?



 A divide and conquer strategy

 Basic idea:
◦ Divide the list in half

◦ Should result be in first or second half?

◦ Recursively search that half



 What’s the best case?

 What’s the worst case?

Q12



Perhaps it’s time for a break.



 Basic recursive idea:
◦ If list is length 0 or 1, then it’s already sorted

◦ Otherwise:

 Divide list into two halves

 Recursively sort the two halves

 Merge the sorted halves back together

 Let’s profile it…



 More trees

Q11c, 13



 Basic recursive idea:
◦ If length is 0 or 1, then it’s already sorted

◦ Otherwise:

 Pick a “pivot”

 Shuffle the items around so all those less than the 
pivot are to its left and greater are
to its right

 Recursively sort the two “partitions”

 Let’s profile it…



 This one is trickier

 How should we choose the “pivot”

Q11d



Another way of creating 
reusable code



 Java libraries provide efficient sorting 
algorithms
◦ Arrays.sort(…) and Collections.sort(…)

 But suppose we want to sort by something 
other than the “natural order” given by 

compareTo()

 Function Objects to the rescue!



 Objects defined to just “wrap up” functions so 
we can pass them to other (library) code

 We’ve been using these for awhile now
◦ Can you think where?

 For sorting we can create a function object 
that implements Comparator



Understanding the 
engineering trade-offs when 
storing data



 Efficient ways to store data based on how 
we’ll use it

 So far we’ve seen ArrayLists
◦ Fast addition to end of list

◦ Fast access to any existing position

◦ Slow inserts to and deletes from middle of list

Q14



 What if we have to add/remove data from a 
list frequently?

 LinkedLists support this:
◦ Fast insertion and removal of elements 

 Once we know where they go

◦ Slow access to arbitrary elements

Q15,16



 void addFirst(E element)

 void addLast(E element)

 E getFirst()

 E getLast()

 E removeFirst()

 E removeLast()

 What about the middle of the list?

◦ LinkedList<E> implements Iterable<E>





Enhanced For Loop What Compiler Generates

for (String s : list) {

// do something

}

Iterator<String> iter =

list.iterator();

while (iter.hasNext()) {

String s = iter.next();

// do something

}



 Implementing ArrayList and LinkedList

 A tour of some data structures

 VectorGraphics work time


