CSSE 220 Day 25

Sorting Algorithms
Algorithm Analysis and Big-0O
Function Objects and the Comparator Interface

Checkout SortingAndSearching project from SVN













Course Goals for Sorting:
You should...

» Be able to describe basic sorting algorithms:
- Selection sort
> Insertion sort
- Merge sort
> Quicksort

» Know the run-time efficiency of each
» Know the best and worst case inputs for each




Profiling Selection Sort

» Profiling: collecting data on the run-time
behavior of an algorithm

» How long does selection sort take on:
- 10,000 elements?
- 20,000 elements?

o]

- 80,000 elements?

» O(n?)




Big-Oh Notation

» In analysis of algorithms we care about
differences between algorithms on very large
Inputs

» We say, “selection sort takes on the order of
n° steps’

» Big-Oh gives a formal definition for
“on the order of”




Formally

» We write f(n) = O(g(n)), and
say ‘f is big-Oh of g”
» if there exists positive constants ¢ and n, such that
» 0 < f(n) < cg(n)
for all n > n,
» gisaceilingonf

Running Time

”I:I

Input Size



Rule of Thumb

» Suppose the number of operations is given by
a polynomial:
a,nk + a, *n*l + ...+ a,m?+ a, *n + a,

» Then the algorithm is O(n%).

» That is, take the highest order term and drop
the coefficient




Insertion Sort

» Basic idea:

- Think of the list as having a sorted part (at the
beginning) and an unsorted part (the rest)

> Get the first number in the
unsorted part

> Insert it into the correct
location in the sorted part,
moving larger values up to
make room

—_

Repeat until

unsorted part is
empty




Insertion Sort Exercise, Q4-11b

» Profile insertion sort

» Analyze insertion sort assuming the inner
while loop runs that maximum number of
times (count the array accesses)

» What input causes the worst case behavior?
The best case?

» Does the input affect selection sort?

Askfpr help if you're stuck! Q4-11b



Searching

» For searching unsorted data, what’s the worst
case number of comparisons we would have
to make?

.



Binary Search of Sorted Data

» A divide and conquer strategy

» Basic idea:
- Divide the list in half
> Should result be in first or second half?
- Recursively search that half




Analyzing Binary Search

» What’s the best case?

» What’s the worst case?

& Ql2



CALVIN! WHAT ARE 1S THIS SOME SORT OF
You DOING TO Fmtm QUESTION, OR WHAT ?

QUFFEE TABLE ! P’f" \\ =
o\ |

Perhaps it’s time for a break.




Merge Sort

» Basic recursive idea:
o If list is length O or 1, then it’s already sorted
> Otherwise:
- Divide list into two halves
- Recursively sort the two halves
- Merge the sorted halves back together

» Let’s profile it...




Analyzing Merge Sort

» More trees



Quicksort

» Basic recursive idea:
- If length is 0 or 1, then it’s already sorted
> Otherwise:
- Pick a “pivot”
- Shuffle the items around so all those less than the

pivot are to its left and greater are
to its right

- Recursively sort the two “partitions”

» Let’s profile it...




Analyzing Quicksort

» This one is trickier
» How should we choose the “pivot”

& Qlld






A Sort of a Different Order

» Java libraries provide efficient sorting
algorithms
- Arrays.sort(..) and Collections.sort(..)

» But suppose we want to sort by something
other than the “natural order” given by

compareTo()

» Function Objects to the rescue!




Function Objects

» Objects defined to just “wrap up” functions so
we can pass them to other (library) code

» We've been using these for awhile now
- Can you think where?

» For sorting we can create a function object
that implements Comparator







Data Structures

» Efficient ways to store data based on how
we’ll use it

» So far we’ve seen ArraylLists
- Fast addition to end of list
- Fast access to any existing position
> Slow inserts to and deletes from middle of list

Q14



Another List Data Structure

» What if we have to add/remove data from a
list frequently?

» LinkedL1ists support this:
- Fast insertion and removal of elements
- Once we know where they go
> Slow access to arbitrary elements



LinkedList<E> Methods

» void addFirst(E element)
» void addLast(E element)
» E getFirst()

» E getLast()

» E removeFirst()

» E removelLast()

» What about the middle of the list?
o LinkedList<E> implements Iterable<E>



Accessing the Middle of a

LinkedList

<<interfaces=
lterable<E>

lterator<E= iterator()

LinkedList<E>

.

<<interfaces:=
lterator<E>

boolean hasMext()
E next()
void remaove()

<<interfaces=
Listiterator<E>

void add(E element)
boolean hasPrevious()
E previous()




An Insider’s View

for (String s : list) { Iterator<String> iter =
// do something list.1terator();

3
while (iter.hasNext()) {

String s = iter.next();
// do something
}

Enhanced For Loop What Compiler Generates




Next Time

» Implementing ArrayList and LinkedList
» A tour of some data structures

» VectorGraphics work time

.



